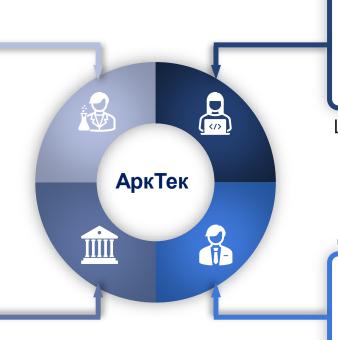


Арктический технологический конкурс «АркТек»

Первая платформа для проведения технологических конкурсов, объединяющая науку и бизнес для развития Арктики

Наука


Практическое применение результатов фундаментальных и прикладных исследований

Решения и научные разработки

Стратегия, субсидии и гранты

Государство

Устойчивое социально-экономическое развитие, внешняя торговля и безопасность

Разработчики

Финансирование доработки высокотехнологичных решений: IT-продуктов и прототипов

Цифровые продукты / аналитические системы

Данные, задачи, инвестиции и гранты

Корпорации

Технологии и технические решения для реализация крупных бизнес-проектов

Арктический технологический конкурс «АркТек»

Общий призовой фонд – 10 000 000₽

В 2023 году в рамках председательства России в Арктическом совете на платформе объявлены три конкурса:

1. АРКТЕК ДАТА

Конкурс для продуктовых и IT-команд, готовых на основе датасетов разработать MVP цифровых сервисов для развития туризма, кадрового потенциала и улучшения качества жизни людей в Арктике

2. АРКТЕК ИНЖИНИРИНГ

Конкурс для научно-технических команд и индивидуальных разработчиков, готовых в рамках конкурса предложить решение технологических задач российских корпораций, осуществляющих деятельность в Арктике

3. АРКТЕК НАУЧНЫЙ ПИТЧ

Конкурс для научных команд и исследователей, развивающих актуальные прикладные и фундаментальные исследования, способствующие развитию Арктического региона

ОРГАНИЗАТОРЫ:



Восточный центр государственного планирования помогает государству и бизнесу оперативно получать актуальную информацию о всех аспектах экономической и социокультурной жизни Дальнего Востока и Арктики для принятия обоснованных управленческих решений

Направления деятельности

Аналитика	ИИ	иссле,	дова	ния
-----------	----	--------	------	-----

- Экспертное сопровождениеМинвостокразвития России
- Проведение научно исследовательских работ
- Мониторинг и оценка социальноэкономического развития территорий
- Отраслевые обзоры и экспертные заключения

Консалтинг

- Комплексное моделирование отраслей и процессов
- Разработка прогнозов социальноэкономического развития территорий
- Разработка территориальных стратегий: макротерриторий, регионов, городов
- Разработка корпоративных финансовых моделей и бизнес планов

Цифровые продукты

- Цифровые двойники отраслей, регионов, процессов
- Информационно-аналитические системы
- Комплексные системы моделирования и прогнозирования

Национальная ассоциация трансфера технологий – партнер конкурсов АРКТЕК ИНЖИНИРИНГ и АРКТЕК НАУЧНЫЙ ПИТЧ

Миссия НАТТ

 способствовать устойчивому росту экономики Российской Федерации путем повышения эффективности трансфера отечественных технологий в промышленность

Направления деятельности

- Цифровая платформа трансфера технологий
- Мониторинг рынка трансфера технологий
- Законодательная и регуляторная деятельность
- Развитие компетенций специалистов, ответственных за трансфер технологий
- Межведомственная коммуникационная площадка

Учредители (май 2017 года)

Цифровая платформа (ЦП) digital-natt.ru

- 20 индустриальных партнеров, работающих с платформой
- 18 проектов по поиску технологий реализовано в интересах крупного бизнеса
- 144 размещенных технологических запросов
- 223 поступивших предложений
- > 600 пользователей платформы

Состав ассоциации

«Наука» - 44 организации «Бизнес – 21 организация «НКО и институты развития» - 14 организаций

Конкурс АРКТЕК ИНЖИНИРИНГ

ЦЕЛЬ

поиск решений научнотехнических задач для развития и освоения Арктического региона

СРОКИ

14 апреля - 24 ноября 2023 г.

для кого

- ✓ Индивидуальные разработчики
- Инженерные команды
- ✓ Компании-разработчики новых технологий

ЧТО ДАЕТ УЧАСТИЕ

Гранты на доработку и тестирование

Отраслевая экспертиза Доработка продукта

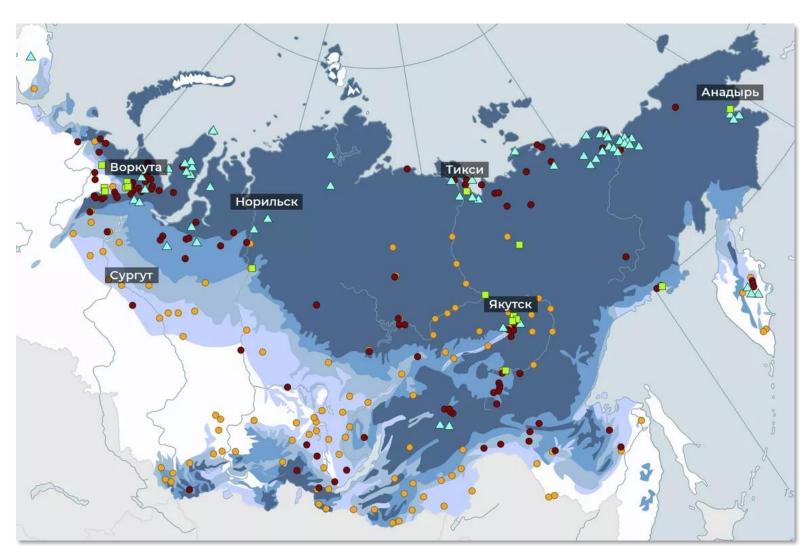
Работа с экспертами корпораций Вклад в развитие Арктики

ИНДУСТРИАЛЬНЫЕ ПАРТНЕРЫ

Подробное описание технологических задач индустриальных партнеров по ссылке: https://arctech.center/arctech-engineering/

Этапы проведения АРКТЕК ИНЖИНИРИНГ 2023

^{*}Даты этапов 2 и 3 могут быть скорректированы с учетом стадии готовности решений и компетенций участников (образовательный блок может быть реализован в более короткий срок, с увеличением времени на этап индивидуальной работы)


Создание технологических и аппаратно-программных (технических) решений для систем контроля качества свайных фундаментов в эксплуатируемых сооружениях на многолетнемерзлых грунтах.

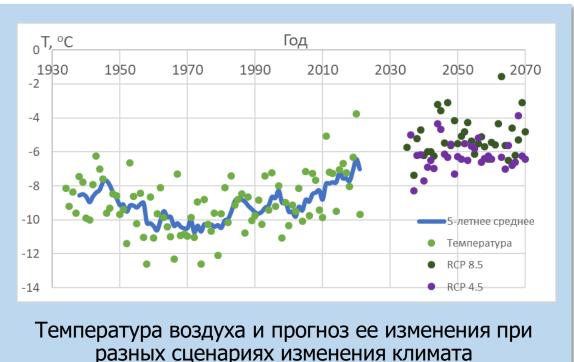
Главный менеджер отдела адаптации научных исследований в области изменения климата 3Ф ПАО «ГМК «Норильский никель»

Котов Павел Игоревич 08.06.2023

Распространение многолетнемерзлых грунтов в России

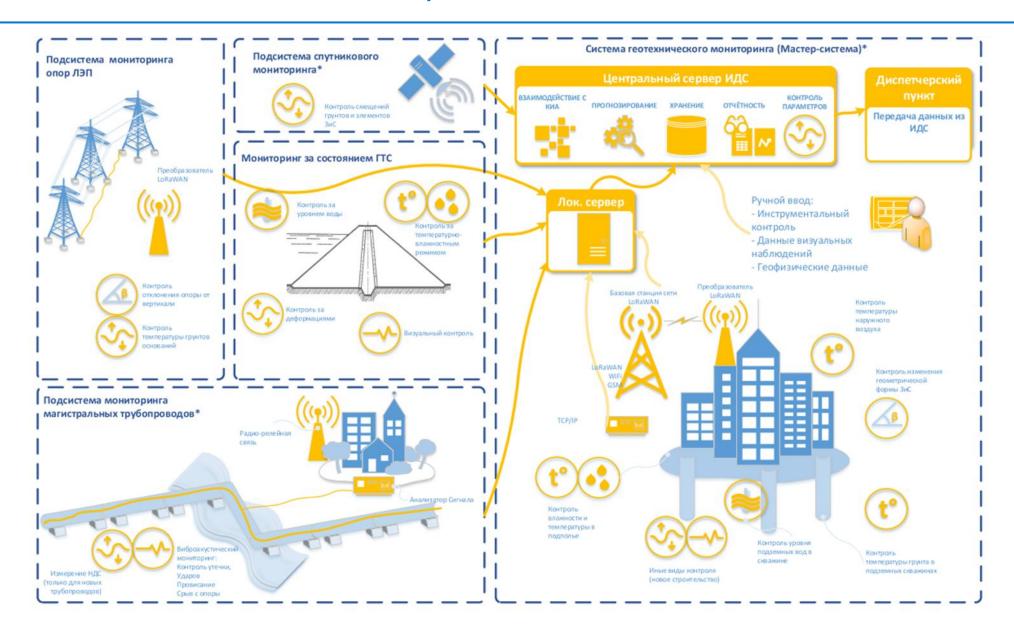
Точки наблюдения за состоянием вечной мерзлоты на территории России:

- 384 скважины программы TSP с датчиками температуры на разных глубинах
- ▲ 68 площадок наблюдения за толщиной сезонно-талого слоя (программа САLM)
- 146 метеостанций Росгидромета, на которых осуществляют мониторинг температур грунта на глубине 3,2 метра
- **35** площадок мониторинга состояния вечной мерзлоты

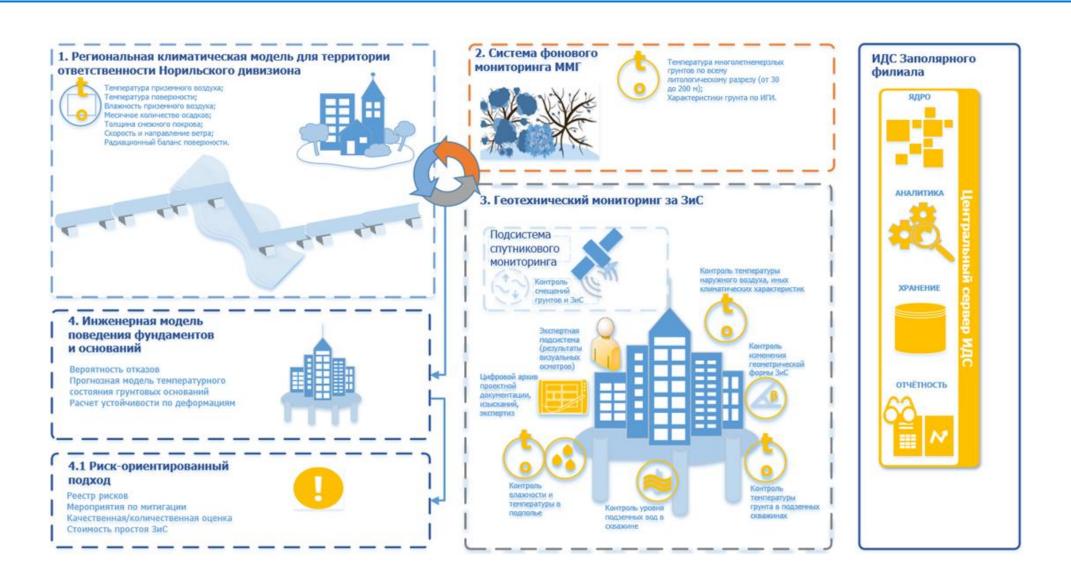

Геокриологические зоны:

- сплошная мерзлота
- прерывистая
- спорадическая
- островная

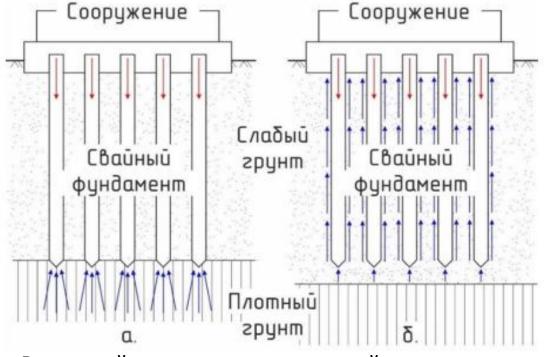
Климатические данные метеостанции г. Норильск



разных сценариях изменения климата


Система геотехнического мониторинга

Принципиальная схема развития информационно-диагностической системы



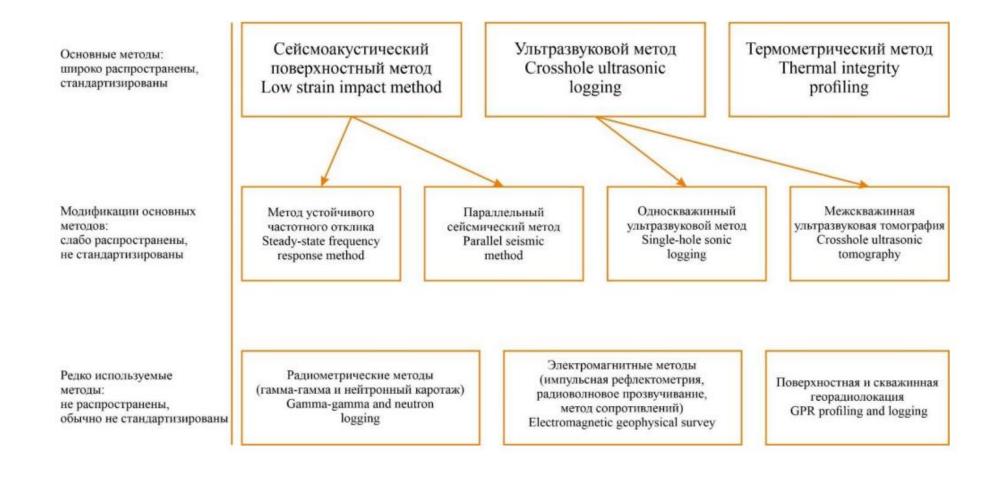
Буроопускные сваи

Бурозабивные сваи

Виды свай по условиям взаимодействия с грунтом: а — сваи-стойки, б — висячие сваи

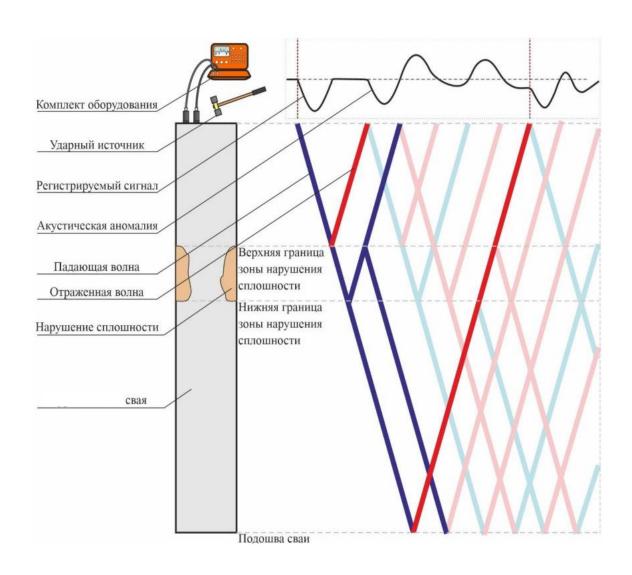
Фотографии дефектов в заглубленных конструкциях (материалы из открытых источников в Интернете)

Нормативное регулирование контроля качества фундаментов



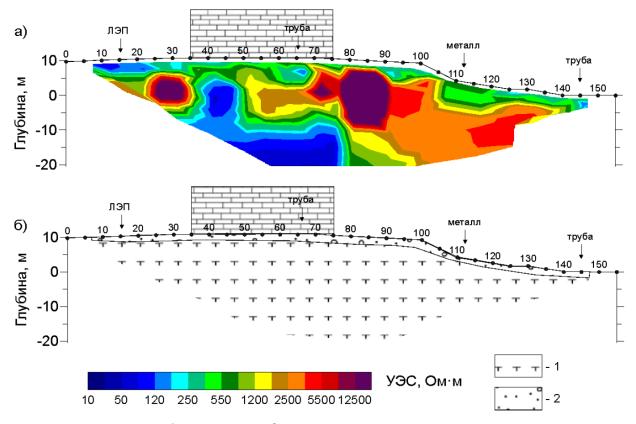
- Основные методы контроля качества фундаментных конструкций сейсмоакустический, ультразвуковой и термометрический, имеют пережившие несколько редакций стандарты ASTM D5882, ASTM D6760, ASTM D7949. Во многих странах существуют национальные стандарты, положения которых не слишком отличаются от документов ASTM.
- Ни один из методов контроля сплошности заглубленных конструкций не стандартизирован в РФ. В действующих Сводах Правил (СП 13-102-2003, СП 45.13330.2012, СП 46.13330.2012, СП 70.13330.2012, СП 79.13330.2012) в лучшем случае содержатся указания по объему контрольных испытаний (допускается использование не только волновых методов, но и гамма-каротажа).
- Отдельные стандарты организации.

Нет нормативов для мерзлых грунтов.


Методы контроля качества заглубленных конструкций

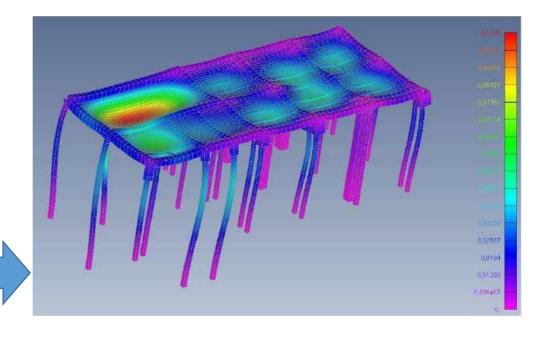
Методы контроля качества заглубленных конструкций

Принцип контроля сплошности свай сейсмоакустическим методом


Пакадана запа	Описание	D
Профиль сваи	Описание	Регистрируемый сигнал
	Свая проектной длины, с постоянным сечением	<u>\</u>
	Свая проектной длины, с постоянным сечением, опирающаяся на грунты повышенной акустической жесткости	√
	Свая с постоянным сечением, длина которой не соответствует проекту	\
	Свая проектной длины, с увеличением акустического импеданса в нижней части	<u></u>
	Свая проектной длины, со снижением акустического импеданса в нижней части	\ <u>\</u>
	Свая проектной длины, со снижением акустического импеданса в верхней части	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Свая проектной длины, с увеличением акустического импеданса в верхней части	_i
	Свая проектной длины, с локальным увеличением акустического импеданса	√
	Свая проектной длины, с локальным снижением акустического импеданса	\ <u>\</u>
	Свая проектной длины, с локальным увеличением акустического импеданса в верхней части	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
	Свая проектной длины, с локальным снижением акустического импеданса в верхней части	- !
	Свая проектной длины, с локальным снижением акустического импеданса вблизи оголовка	~!^^^
	Свая проектной длины, с нерегулярным профилем	~!~~~~ \

Типовые сейсмоакустические сигналы для некоторых характерных моделей, полученные в программе PileWave (Piletest LLC).

Применение электротомографии для оценки длины свай



1 – долериты; 2 – насыпные рыхлые отложения

Основные требования к результату выполнения работы

№ п/п	Параметр	Значение		
1	Критерий определения	Зависит от времени работы, веса, стоимости,		
	рейтинга участника	правильности определения контролируемых		
		параметров		
2	Описание	Область распространения многолетнемерзлых		
		грунтов, 1 принцип строительства на свайном		
		основании с проветриваемым подпольем, здание		
		эксплуатируется.		
3	Описание свай	Буроопускные сваи длиной от 5 до 30 метров,		
		бетонные и железобетонные квадратного сечения		
		(минимальный размер (минимум 250*250 мм, а		
		максимум 500*500 мм)		
		Висячие сваи и сваи-стойки		
4	Грунтовый разрез	Мерзлые глинистые грунты или мерзлые глинистые		
	(грунты основания)	грунты, подстилаемые скальным основанием, в		
		которые заглублены сваи		
5	Определение	Погрешность не более 30 см.		
	фактической длины свай			
6	Выявление нарушений	Выявление дефектов сплошности сваи, нарушений		
		контакта между сваей и вмещающими грунтами и		
		оценка площади контактной зоны по каждой грани		
		сечения		
7	Определение глубины	Определение наличия под подошвой сваи скальных		
	заглубления в скальные	грунтов, а также глубину заглубления в скальные		
	грунты	грунты (погрешность не более 30 см)		
8	Время года и погодные	Возможность проведения испытаний зимой в		
	условия	арктических условиях		

Визуализация перемещений здания

Спасибо за внимание!

Этапы проведения АРКТЕК ИНЖИНИРИНГ 2023

^{*}Даты этапов 2 и 3 могут быть скорректированы с учетом стадии готовности решений и компетенций участников (образовательный блок может быть реализован в более короткий срок, с увеличением времени на этап индивидуальной работы)

Принять участие в конкурсе АРКТЕК ИНЖИНИРИНГ

- https://arctech.center/arctech-engineering/
- **a** supportengineering@arctech.center

