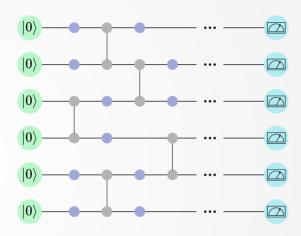

S-Quantum

Реалистичное моделирование квантовых вычислений

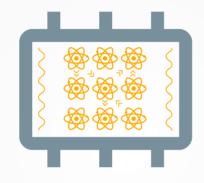


Два слагаемых квантового успеха

Мощный компьютер

Много кубитов
Низкие шумы
Высокая скорость
Надёжные операции

Хороший алгоритм

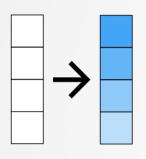

Квантовое превосходство Шумоподавление Экономит кубиты Коррекция ошибок

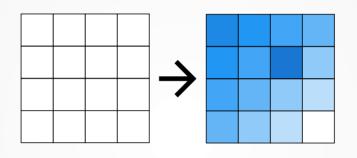
Железо готовится. Нужны алгоритмы

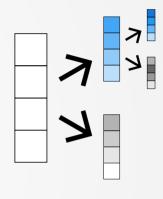

Классический суперкомпьютер

Не справится с задачей

Реальный квантовый компьютер


Дорого Нужны новые алгоритмы Ещё не готов




Виртуальная квантовая машина

Дёшево Готово Даст наработать алгоритмы

Квантовые эмуляторы

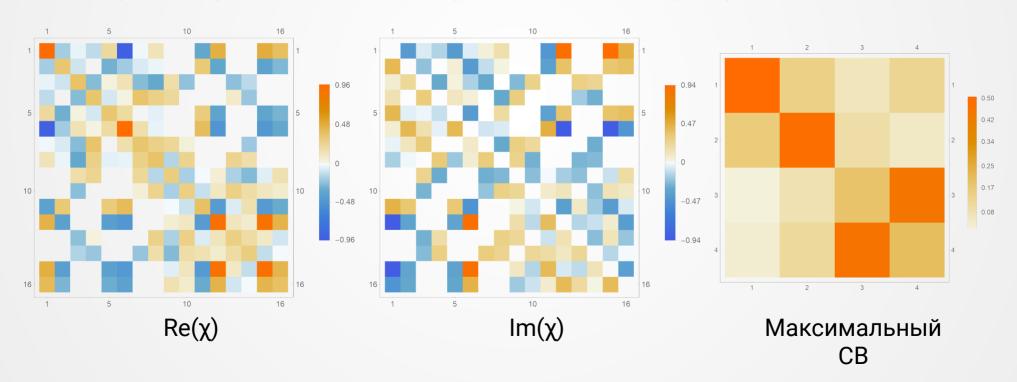
Векторный эмулятор

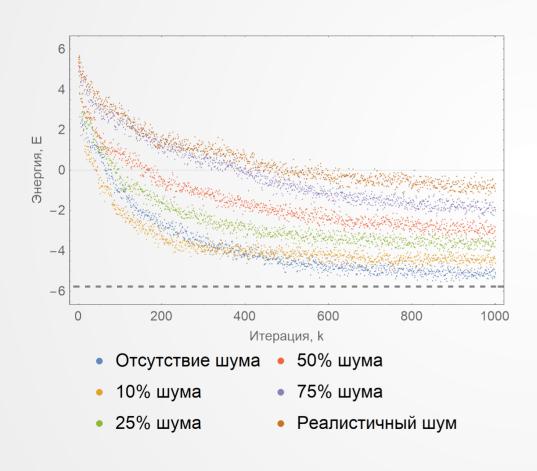
Экономит ресурсы Моделирует только идеальный случай

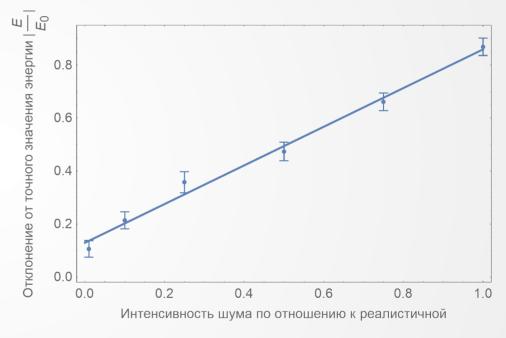
Эмулятор матриц плотности

Реальная динамика Надо много ресурсов

Эмулятор с шумовыми гейтами


Реальная динамика Экономит ресурсы




Томография атомного CNOT

L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky et al., Coupled dynamics of spin qubits in optical dipole microtraps: Application to the error analysis of a Rydberg-blockade gate, Phys. Rev. A 106, 042410 (2022)



VQE для модели Швингера

Рынок и конкуренты

Дорожная карта + рынок индустрии

SAM 0,5 млрд. Эмуляторы и облачные

системы

SOM 0,2 млрд. К 2025 году Рост рынка +50% в год

	Виртуальные системы		Реальные системы	
	S-Quantum	₩ QBoard	Центр Квантовых Технологий	IBM Q
Число кубитов	37	32	50*	433
Моделирование "Как в теории"	~	~	×	×
Моделирование "Как в реальности"	~	×	~	~
Запуск на классической инфраструктуре	~	~	×	×

Карта коммуникаций проекта

Коммерческий сектор

Проведена закупка Есть планы сотрудничества

Проведен пилот

Проведены консультации Возможно сотрудничество

Научный сектор

Проведёна апробация Закупаем РИД

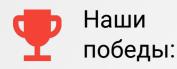
Совместный пилот Возможно сотрудничество

Проведена консультация Возможна закупка

Сектор безопасности

Проведена апробация Есть план по закупке

Ведём консультации Есть план сотрудничества


Поддержка

Юридическая поддержка

B2B / B2G продвижение

Проект вошел в топ-3 российских молодёжных технологических стартапов 2023 top1000.univertechpred.ru/?id=5500

Проект – победитель конкурсов "Умник" и "Студенческий Стартап" fasie.ru/press/fund/studstartup-results-2/

Наши публикации:

3 статьи, 5 докладов, 3 НИР, 1 диссертация

РИД: ПО для ЭВМ "Эмулятор квантово-вычислительного

регистра"

Свидетельство № 2022660232

clck.ru/34sdG8

Experimental adaptive quantum state tomography based on rank-preserving transformations // Laser Physics Letters - 2020. T. 17, N. 10.

Квантовая томография - основа исследования реальных квантовых процессов

Coupled dynamics of spin qubits in optical dipole microtraps: Application to the error analysis of a Rydberg-blockade gate // Physical Review A - 2022. Т. 106, Вып. 4. Теоретическое исследование модели ошибок квантового вычислителя, учтённой в симуляторе

A. D. Moiseevsky.

Quantum-enhanced symmetric cryptanalysis for S-AES // URL: arxiv.org/abs/2304.05380 - 2023.

Новый класс квантовых криптоаналитических алгоритмов, открытый с помощью симулятора doi.org/10.48550/arXiv.2304.05380



А. Д. Моисеевский.

Анализ рандомизированных алгоритмов для реалистичных моделей квантовой вычислительной машины // МГУ им. М. В. Ломоносова – 2020.

Диссертация, где при помощи симулятора показана достижимость квантового превосходства квантовым компьютером МГУ. gotlabs.org/files/diploma/moiseevskiy.pdf

